THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MMAT5000 Analysis I 2015-2016
Suggested Solution to Final Examination

1. (a) (i) Let $f:[a, b] \rightarrow \mathbb{R}$ be a function which is continuous on $[a, b]$ and differentiable on (a, b). Then there exists $c \in(a, b)$ such that $f(b)-f(a)=f^{\prime}(c)(b-a)$.
(ii) Let $u, v \in[1, \infty)$ and $u<v$. Since $f(x)=\frac{1}{x^{2}}$ is continuous on $[u, v]$ and differentiable on (u, v), by the Mean Value Theorem, there exists $c \in(u, v)$ such that

$$
\frac{f(v)-f(u)}{v-u}=f^{\prime}(c)=-\frac{2}{c^{3}}
$$

Then,

$$
\left|\frac{f(v)-f(u)}{v-u}\right|=\left|-\frac{2}{c^{3}}\right|=\frac{2}{c^{3}} \leq 2
$$

and so

$$
|f(v)-f(u)| \leq 2|v-u|
$$

f is a Lipschitz function on $[1, \infty)$ and therefore uniformly continuous on $[1, \infty)$.
(b) Let $v_{n}=\frac{1}{2 n} \geq 0$ and $u_{n}=\frac{1}{n} \geq 0$. Then $\lim _{n \rightarrow \infty} v_{n}-u_{n}=-\frac{1}{2 n}=0$, however $\lim _{n \rightarrow \infty} f\left(v_{n}\right)-$ $f\left(u_{n}\right)=\lim _{n \rightarrow \infty} 3 n^{2}$ which goes to positive infinity. Therefore, $f(x)=\frac{1}{x^{2}}$ is not uniformly continuous on $(0, \infty)$.
2. Let $\epsilon>0$. Since $f:[a, b] \rightarrow \mathbb{R}$ is continuous and hence uniformly continuous, there exists $\delta>0$ such that for any $u, v \in[a, b]$ and $|u-v|<\delta$, then $|f(u)-f(v)|<\frac{\epsilon}{2}$.
By Archimedean property, there exists $m \in \mathbb{N}$ such that $h:=\frac{b-a}{m}<\delta$. Define $I_{1}=[a, a+h]$ and $I_{k}=(a+(k-1) h, a+k h]$ for $k=2,3, \cdots, m$. On each interval I_{k}, define g to be the linear function joining the points

$$
(a+(k-1) h, f(a+(k-1) h)) \quad \text { and } \quad(a+k h, f(a+k h))
$$

Then g is a continuous piecewise linear function on $[a, b]$.
Let $x \in I_{k}$. By the construction of $g, f(a+k h)=g(a+k h)$, then

$$
\begin{aligned}
|f(x)-g(x)| & =|f(x)-f(a+k h)+g(a+k h)-g(x)| \\
& \geq|f(x)-f(a+k h)|+|g(a+k h)-g(x)| \\
& \geq|f(x)-f(a+k h)|+|g(a+k h)-g(a+(k-1) h)| \\
& =|f(x)-f(a+k h)|+|f(a+k h)-f(a+(k-1) h)| \\
& <\frac{\epsilon}{2}+\frac{\epsilon}{2} \\
& =\epsilon
\end{aligned}
$$

3. Let $\epsilon>0$. Let $P=\left\{0,1-\frac{\epsilon}{3}, 1,2-\frac{\epsilon}{3}, 2\right\}$ be a partition of the interval $[0,2]$. Then we have

$$
\begin{aligned}
U(P, f) & =(1)\left(1-\frac{\epsilon}{3}\right)+(2)\left(\frac{\epsilon}{3}\right)+(2)\left(1-\frac{\epsilon}{3}\right)+(3)\left(\frac{\epsilon}{3}\right) \\
L(P, f) & =(1)\left(1-\frac{\epsilon}{3}\right)+(1)\left(\frac{\epsilon}{3}\right)+(2)\left(1-\frac{\epsilon}{3}\right)+(2)\left(\frac{\epsilon}{3}\right)
\end{aligned}
$$

Therefore, $U(P, f)-L(P, f)=\frac{2 \epsilon}{3}<\epsilon$ and f is integrable on $[0,2]$.
4. Note that $\inf f\left(\left[x_{i-1}, x_{i}\right]\right) \leq f\left(a+\left(i-\frac{1}{2}\right) h_{n}\right) \leq \sup f\left(\left[x_{i-1}, x_{i}\right]\right)$, so

$$
L(P, f) \leq M_{n}(P, f) \leq U(P, f)
$$

Since f is integrable on $[a, b], \lim _{n \rightarrow \infty} L(P, f)=\lim _{n \rightarrow \infty} U(P, f)=\int_{a}^{b} f$, by using the sandwich theorem, $\lim _{n \rightarrow \infty} M_{n}(P, f)=\int_{a}^{b} f$.
5. (a) Define $f:[a, b] \rightarrow \mathbb{R}$ by $f(a)=1$ but $f(x)=0$ for $a<x \leq b$. Then $\int_{a}^{b} f=0$, but f is not the zero function.
(b) Suppose that $f:[a, b] \rightarrow \mathbb{R}$ is a continuous function but not the zero function, then there exists $x_{0} \in[a, b]$ such that $f\left(x_{0}\right)>0$.
Since f is continuous at x_{0}, let $\epsilon_{0}=\frac{f\left(x_{0}\right)}{2}>0$, there exists $\delta>0$ such that for all $x \in[a, b]$ with $\left|x-x_{0}\right|<\delta$,

$$
-\frac{f\left(x_{0}\right)}{2}=-\epsilon<f(x)-f\left(x_{0}\right)<\epsilon=\frac{f\left(x_{0}\right)}{2} .
$$

Then $f(x)>\frac{f\left(x_{0}\right)}{2}>0$.
Now, take $x_{1}, x_{2} \in[a, b] \cap\left(x_{0}-\delta, x_{0}+\delta\right)$ with $x_{1}<x_{2}$ and choose a partition P such that x_{1} and x_{2} are partition points of P. Then, we have

$$
L(P, f) \geq \inf f\left(\left[x_{1}, x_{2}\right]\right) \cdot\left(x_{2}-x_{1}\right) \geq \frac{f\left(x_{0}\right)}{2} \cdot\left(x_{2}-x_{1}\right)>0
$$

Then $\int_{a}^{b} f \geq U(P, f)>0$.
6. - If $x, y \in \mathbb{R}^{+}$, then clearly $d(x, y)=\left|\ln \left(\frac{y}{x}\right)\right| \geq 0$. Furthermore, if $d(x, y)=\left|\ln \left(\frac{y}{x}\right)\right|=0$, then $\frac{y}{x}=1$ and so $x=y$.

- If $x, y \in \mathbb{R}^{+}$, then

$$
d(y, x)=\left|\ln \left(\frac{x}{y}\right)\right|=|\ln x-\ln y|=|\ln y-\ln x|=\left|\ln \left(\frac{y}{x}\right)\right|=d(x, y)
$$

- If $x, y, z \in \mathbb{R}^{+}$, then

$$
\begin{aligned}
d(x, y)+d(y, z) & =\left|\ln \left(\frac{y}{x}\right)\right|+\left|\ln \left(\frac{z}{y}\right)\right| \\
& =|\ln y-\ln x|+|\ln z-\ln y| \\
& \geq|\ln z-\ln x| \quad \text { (triangle inequality) } \\
& =\left|\ln \left(\frac{z}{x}\right)\right| \\
& =d(z, x)
\end{aligned}
$$

$$
\left\|\left(a \cdot\left\{x_{n}\right\}\right)\right\|=\left\|\left\{a x_{n}\right\}\right\|=\sup \left\{\left|a x_{1}\right|,\left|a x_{2}\right|, \cdots\right\}=|a| \sup \left\{\left|x_{1}\right|,\left|x_{2}\right|, \cdots\right\}=|a| \cdot\left\|\left\{x_{n}\right\}\right\| .
$$

- Let $\left\{x_{n}\right\},\left\{y_{n}\right\} \in X$. Since $\left\|\left\{x_{n}\right\}\right\| \geq\left|x_{i}\right|$ and $\left\|\left\{y_{n}\right\}\right\| \geq\left|y_{i}\right|$ for all $i \in \mathbb{N},\left\|\left\{x_{n}\right\}\right\|+\left\|\left\{y_{n}\right\}\right\| \geq$ $\left|x_{i}\right|+\left|y_{i}\right| \geq\left|x_{i}+y_{i}\right|$ for all $i \in \mathbb{N}$. Hence, we have

$$
\left\|\left\{x_{n}\right\}\right\|+\left\|\left\{y_{n}\right\}\right\| \geq \sup \left\{\left|x_{1}+y_{1}\right|,\left|x_{2}+y_{2}\right|, \cdots\right\}=\left\|\left\{x_{n}\right\}+\left\{y_{n}\right\}\right\| .
$$

- Let $\left\{x_{n}\right\} \in X$ and $\left\|\left\{x_{n}\right\}\right\|=0.0 \geq\left\|\left\{x_{n}\right\}\right\| \geq\left|x_{i}\right| \geq 0$ for all $i \in \mathbb{N}$ which implies that $x_{i}=0$ for all $i \in \mathbb{N}$.

8. (a) Let r_{0} be a rational number in $[0,1]$, then $f\left(r_{0}\right)$ is nonzero. Since the set of irrational numbers in $[0,1]$ is dense in $[0,1]$, there exists an irrational sequence $\left\{x_{n}\right\}$ in $[0,1]$ such that $\lim _{n \rightarrow \infty} x_{n}=$ r_{0}. However, $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=\lim _{n \rightarrow \infty} 0=0 \neq f\left(r_{0}\right)$. Therefore, f is discontinuous at every rational number in $[0,1]$.
(b) Let x_{0} be an irrational number in $[0,1]$ and let $\epsilon>0$. By the Archimedean property, there exists $N \in \mathbb{N}$ such that $\frac{1}{N}<\epsilon$. Since there are only finitely many rational numbers with denominator less than N in the interval $[0,1]$, we can choose $\delta>0$ such that $\left(x_{0}-\delta, x_{0}+\delta\right)$ is a subset of $[0,1]$ and it contains no rational numbers with denominator less than N. It follows that for $\left|x-x_{0}\right|<\delta$,

- if x is rational, $x=\frac{m}{n}$ where m and n are natural numbers with $\operatorname{gcd}(m, n)=1$ and $n \geq N$, then $\left|f(x)-f\left(x_{0}\right)\right|=\frac{1}{n}-0 \leq \frac{1}{N}<\epsilon ;$
- if x is irrational, then $\left|f(x)-f\left(x_{0}\right)\right|=0-0=0<\epsilon$.

Therefore, f is continuous at every irrational number in $[0,1]$.
(c) Let $\epsilon>0$. By the Archimedean property, there exists $N \in \mathbb{N}$ such that $\frac{1}{N}<\frac{\epsilon}{2}$. There are only finitely many rational numbers with denominator less than N in the interval $(0,1)$, we label them as $x_{1}, x_{2}, \cdots, x_{n-1}$ such that $x_{0}:=0<x_{1}<x_{2}<\cdots<x_{n-1}<x_{n}:=1$. We choose a sufficiently small $\delta>0$ such that $\delta<\frac{\epsilon}{4 n}$ (i.e. $2 n \delta<\frac{\epsilon}{2}$) and $x_{0}<x_{0}+\delta<x_{1}-\delta<x_{1}+\delta<x_{2}-\delta<x_{2}+\delta<\cdots<x_{n-1}-\delta<x_{n-1}+\delta<x_{n}-\delta<x_{n}$.

We let $P=\left\{x_{0}, x_{0}+\delta, x_{1}-\delta, x_{1}+\delta, x_{2}-\delta, x_{2}+\delta \cdots, x_{n-1}-\delta, x_{n-1}+\delta, x_{n}-\delta, x_{n}\right\}$ be a partition of $[0,1]$. Note that $L(P, f)=0$ as every subinterval contains an irrational number.

Also, we have

$$
\begin{aligned}
& U(P, f) \\
= & \delta \cdot \sup f\left(\left[x_{0}, x_{0}+\delta\right]\right)+\left(x_{1}-x_{0}-2 \delta\right) \cdot \sup f\left(\left[x_{0}+\delta, x_{1}-\delta\right]\right) \\
& +2 \delta \cdot \sup f\left(\left[x_{1}-\delta, x_{1}+\delta\right]\right)+\cdots \\
& +\left(x_{n}-x_{n-1}-2 \delta\right) \cdot \sup f\left(\left[x_{n-1}+\delta, x_{n}-\delta\right]\right)+\delta \cdot \sup f\left(\left[x_{n}-\delta, x_{n}\right]\right) \\
= & \delta \cdot\left(\sup f\left(\left[x_{0}, x_{0}+\delta\right]\right)+\sup f\left(\left[x_{n}-\delta, x_{n}\right]\right)\right) \\
& +\sum_{i=1}^{n}\left(x_{i}-x_{i-1}-2 \delta\right) \cdot \sup f\left(\left[x_{i}+\delta, x_{i-1}-\delta\right]\right)+2 \delta \sum_{i=1}^{n-1} \sup f\left(\left[x_{1}-\delta, x_{1}+\delta\right]\right) \\
\leq & \delta \cdot(1+1)+\sum_{i=1}^{n}\left(x_{i}-x_{i-1}-2 \delta\right) \cdot \frac{1}{N}+2 \delta \sum_{i=1}^{n-1} 1 \\
= & 2 n \delta+\frac{1-2 n \delta}{N} \\
\leq & 2 n \delta+\frac{1}{N} \\
< & \frac{\epsilon}{2}+\frac{\epsilon}{2} \\
= & \epsilon
\end{aligned}
$$

Therefore, $U(P, f)-L(P, f)<\epsilon$ and f is integrable on $[0,1]$.

