THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MMAT5000 Analysis I 2015-2016 Suggested Solution to Final Examination

- 1. (a) (i) Let $f : [a, b] \to \mathbb{R}$ be a function which is continuous on [a, b] and differentiable on (a, b). Then there exists $c \in (a, b)$ such that f(b) - f(a) = f'(c)(b - a).
 - (ii) Let $u, v \in [1, \infty)$ and u < v. Since $f(x) = \frac{1}{x^2}$ is continuous on [u, v] and differentiable on (u, v), by the Mean Value Theorem, there exists $c \in (u, v)$ such that

$$\frac{f(v) - f(u)}{v - u} = f'(c) = -\frac{2}{c^3}.$$

Then,

$$\left|\frac{f(v)-f(u)}{v-u}\right| = \left|-\frac{2}{c^3}\right| = \frac{2}{c^3} \le 2$$

and so

$$|f(v) - f(u)| \le 2|v - u|.$$

f is a Lipschitz function on $[1,\infty)$ and therefore uniformly continuous on $[1,\infty)$.

- (b) Let $v_n = \frac{1}{2n} \ge 0$ and $u_n = \frac{1}{n} \ge 0$. Then $\lim_{n \to \infty} v_n u_n = -\frac{1}{2n} = 0$, however $\lim_{n \to \infty} f(v_n) f(u_n) = \lim_{n \to \infty} 3n^2$ which goes to positive infinity. Therefore, $f(x) = \frac{1}{x^2}$ is not uniformly continuous on $(0, \infty)$.
- 2. Let $\epsilon > 0$. Since $f : [a, b] \to \mathbb{R}$ is continuous and hence uniformly continuous, there exists $\delta > 0$ such that for any $u, v \in [a, b]$ and $|u v| < \delta$, then $|f(u) f(v)| < \frac{\epsilon}{2}$.

By Archimedean property, there exists $m \in \mathbb{N}$ such that $h := \frac{b-a}{m} < \delta$. Define $I_1 = [a, a+h]$ and $I_k = (a + (k-1)h, a + kh]$ for $k = 2, 3, \dots, m$. On each interval I_k , define g to be the linear function joining the points

$$(a + (k - 1)h, f(a + (k - 1)h))$$
 and $(a + kh, f(a + kh)).$

Then g is a continuous piecewise linear function on [a, b].

Let $x \in I_k$. By the construction of g, f(a + kh) = g(a + kh), then

$$\begin{aligned} |f(x) - g(x)| &= |f(x) - f(a + kh) + g(a + kh) - g(x)| \\ &\ge |f(x) - f(a + kh)| + |g(a + kh) - g(x)| \\ &\ge |f(x) - f(a + kh)| + |g(a + kh) - g(a + (k - 1)h)| \\ &= |f(x) - f(a + kh)| + |f(a + kh) - f(a + (k - 1)h)| \\ &< \frac{\epsilon}{2} + \frac{\epsilon}{2} \\ &= \epsilon \end{aligned}$$

3. Let $\epsilon > 0$. Let $P = \{0, 1 - \frac{\epsilon}{3}, 1, 2 - \frac{\epsilon}{3}, 2\}$ be a partition of the interval [0, 2]. Then we have

$$\begin{array}{lll} U(P,f) & = & (1)(1-\frac{\epsilon}{3})+(2)(\frac{\epsilon}{3})+(2)(1-\frac{\epsilon}{3})+(3)(\frac{\epsilon}{3}) \\ L(P,f) & = & (1)(1-\frac{\epsilon}{3})+(1)(\frac{\epsilon}{3})+(2)(1-\frac{\epsilon}{3})+(2)(\frac{\epsilon}{3}) \end{array}$$

Therefore, $U(P, f) - L(P, f) = \frac{2\epsilon}{3} < \epsilon$ and f is integrable on [0, 2].

4. Note that $\inf f([x_{i-1}, x_i]) \le f(a + (i - \frac{1}{2})h_n) \le \sup f([x_{i-1}, x_i])$, so

$$L(P, f) \le M_n(P, f) \le U(P, f).$$

Since f is integrable on [a, b], $\lim_{n \to \infty} L(P, f) = \lim_{n \to \infty} U(P, f) = \int_a^b f$, by using the sandwich theorem, $\lim_{n \to \infty} M_n(P, f) = \int_a^b f.$

- 5. (a) Define $f : [a,b] \to \mathbb{R}$ by f(a) = 1 but f(x) = 0 for $a < x \le b$. Then $\int_a^b f = 0$, but f is not the zero function.
 - (b) Suppose that $f : [a, b] \to \mathbb{R}$ is a continuous function but not the zero function, then there exists $x_0 \in [a, b]$ such that $f(x_0) > 0$.

Since f is continuous at x_0 , let $\epsilon_0 = \frac{f(x_0)}{2} > 0$, there exists $\delta > 0$ such that for all $x \in [a, b]$ with $|x - x_0| < \delta$, $f(x_0) = f(x_0) = f(x_0)$

$$-\frac{f(x_0)}{2} = -\epsilon < f(x) - f(x_0) < \epsilon = \frac{f(x_0)}{2}$$

Then $f(x) > \frac{f(x_0)}{2} > 0.$

Now, take $x_1, x_2 \in [a, b] \cap (x_0 - \delta, x_0 + \delta)$ with $x_1 < x_2$ and choose a partition P such that x_1 and x_2 are partition points of P. Then, we have

$$L(P, f) \ge \inf f([x_1, x_2]) \cdot (x_2 - x_1) \ge \frac{f(x_0)}{2} \cdot (x_2 - x_1) > 0.$$

Then $\int_{a}^{b} f \ge U(P, f) > 0.$

6. • If $x, y \in \mathbb{R}^+$, then clearly $d(x, y) = \left| \ln\left(\frac{y}{x}\right) \right| \ge 0$. Furthermore, if $d(x, y) = \left| \ln\left(\frac{y}{x}\right) \right| = 0$, then $\frac{y}{x} = 1$ and so x = y.

• If $x, y \in \mathbb{R}^+$, then

$$d(y,x) = \left|\ln\left(\frac{x}{y}\right)\right| = \left|\ln x - \ln y\right| = \left|\ln y - \ln x\right| = \left|\ln\left(\frac{y}{x}\right)\right| = d(x,y).$$

• If $x, y, z \in \mathbb{R}^+$, then

$$d(x, y) + d(y, z) = \left| \ln \left(\frac{y}{x} \right) \right| + \left| \ln \left(\frac{z}{y} \right) \right|$$

= $\left| \ln y - \ln x \right| + \left| \ln z - \ln y \right|$
 $\geq \left| \ln z - \ln x \right|$ (triangle inequality)
= $\left| \ln \left(\frac{z}{x} \right) \right|$
= $d(z, x)$

7. • Let $\{x_n\} \in X$ and $a \in \mathbb{R}$. We have

$$||(a \cdot \{x_n\})|| = ||\{ax_n\}|| = \sup\{|ax_1|, |ax_2|, \cdots\} = |a| \sup\{|x_1|, |x_2|, \cdots\} = |a| \cdot ||\{x_n\}||$$

• Let $\{x_n\}, \{y_n\} \in X$. Since $||\{x_n\}|| \ge |x_i|$ and $||\{y_n\}|| \ge |y_i|$ for all $i \in \mathbb{N}$, $||\{x_n\}|| + ||\{y_n\}|| \ge |x_i| + |y_i| \ge |x_i + y_i|$ for all $i \in \mathbb{N}$. Hence, we have

$$||\{x_n\}|| + ||\{y_n\}|| \ge \sup\{|x_1 + y_1|, |x_2 + y_2|, \cdots\} = ||\{x_n\} + \{y_n\}||.$$

- Let $\{x_n\} \in X$ and $||\{x_n\}|| = 0$. $0 \ge ||\{x_n\}|| \ge |x_i| \ge 0$ for all $i \in \mathbb{N}$ which implies that $x_i = 0$ for all $i \in \mathbb{N}$.
- 8. (a) Let r_0 be a rational number in [0, 1], then $f(r_0)$ is nonzero. Since the set of irrational numbers in [0, 1] is dense in [0, 1], there exists an irrational sequence $\{x_n\}$ in [0, 1] such that $\lim_{n \to \infty} x_n = r_0$. However, $\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} 0 = 0 \neq f(r_0)$. Therefore, f is discontinuous at every rational number in [0, 1].
 - (b) Let x_0 be an irrational number in [0, 1] and let $\epsilon > 0$. By the Archimedean property, there exists $N \in \mathbb{N}$ such that $\frac{1}{N} < \epsilon$. Since there are only finitely many rational numbers with denominator less than N in the interval [0, 1], we can choose $\delta > 0$ such that $(x_0 \delta, x_0 + \delta)$ is a subset of [0, 1] and it contains no rational numbers with denominator less than N. It follows that for $|x x_0| < \delta$,
 - if x is rational, $x = \frac{m}{n}$ where m and n are natural numbers with gcd(m, n) = 1 and $n \ge N$, then $|f(x) f(x_0)| = \frac{1}{n} 0 \le \frac{1}{N} < \epsilon$;
 - if x is irrational, then $|f(x) f(x_0)| = 0 0 = 0 < \epsilon$.

Therefore, f is continuous at every irrational number in [0, 1].

(c) Let $\epsilon > 0$. By the Archimedean property, there exists $N \in \mathbb{N}$ such that $\frac{1}{N} < \frac{\epsilon}{2}$. There are only finitely many rational numbers with denominator less than N in the interval (0,1), we label them as x_1, x_2, \dots, x_{n-1} such that $x_0 := 0 < x_1 < x_2 < \dots < x_{n-1} < x_n := 1$. We choose a sufficiently small $\delta > 0$ such that $\delta < \frac{\epsilon}{4n}$ (i.e. $2n\delta < \frac{\epsilon}{2}$) and

$$x_0 < x_0 + \delta < x_1 - \delta < x_1 + \delta < x_2 - \delta < x_2 + \delta < \dots < x_{n-1} - \delta < x_{n-1} + \delta < x_n - \delta < x_n.$$

We let $P = \{x_0, x_0 + \delta, x_1 - \delta, x_1 + \delta, x_2 - \delta, x_2 + \delta \cdots, x_{n-1} - \delta, x_{n-1} + \delta, x_n - \delta, x_n\}$ be a partition of [0, 1]. Note that L(P, f) = 0 as every subinterval contains an irrational number.

Also, we have

$$U(P, f) = \delta \cdot \sup f([x_0, x_0 + \delta]) + (x_1 - x_0 - 2\delta) \cdot \sup f([x_0 + \delta, x_1 - \delta]) + 2\delta \cdot \sup f([x_1 - \delta, x_1 + \delta]) + \cdots + (x_n - x_{n-1} - 2\delta) \cdot \sup f([x_{n-1} + \delta, x_n - \delta]) + \delta \cdot \sup f([x_n - \delta, x_n]) = \delta \cdot (\sup f([x_0, x_0 + \delta]) + \sup f([x_n - \delta, x_n])) + \sum_{i=1}^{n} (x_i - x_{i-1} - 2\delta) \cdot \sup f([x_i + \delta, x_{i-1} - \delta]) + 2\delta \sum_{i=1}^{n-1} \sup f([x_1 - \delta, x_1 + \delta]) \le \delta \cdot (1 + 1) + \sum_{i=1}^{n} (x_i - x_{i-1} - 2\delta) \cdot \frac{1}{N} + 2\delta \sum_{i=1}^{n-1} 1 = 2n\delta + \frac{1 - 2n\delta}{N} \le 2n\delta + \frac{1}{N} \le \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

Therefore, $U(P, f) - L(P, f) < \epsilon$ and f is integrable on [0, 1].